Showing posts with label School of Natural Sciences. Show all posts
Showing posts with label School of Natural Sciences. Show all posts

Tuesday, October 11, 2016

Mengenal Vektor dan Skalar


Vektor dan hitung vektor (penjumlahan, perkalian dengan skalar, pengurangan vektor, vektor satuan, basis ortonormal, notasi jumlahan, hasil kali skalar, hasil kali silang, hasil kali tensor, transformasi ortogonal, redefinisi vektor dan skalar)

1. Scalar may refer to: Scalar (mathematics), an element of a field, usually a real number, which is used to define a vector space Scalar (physics), a quantity represented by a mathematical scalar that is independent of specific classes of coordinate systems, or one that is usually said to be described by a single real number. 

2. When used without any further description, vector refers either to: 

-Most generally, an element of a vector space In physics and geometry, 

-a Euclidean vector, used to represent physical quantities that have both magnitude and direction


[1]

Vektor


[2]


[3]


[4]


Penulis Catatan: Mba Nawa, M.Sc.

Sumber Tambahan: Wikipedia

Ketua Panitia: Mba Siti Wirdah, M.Sc.

Guru: Dr. rer. nat. Muhammad Farchani Rosyid, M.Sc.
(Doctor of Physics, Technical University of Clausthal, Germany)
ASSOCIATE PROFESSOR: Laboratorium Fisika Atom dan Inti, FMIPA UGM

Sunday, October 9, 2016

Fisika Upaya Memahami Alam Semesta

Apa Itu Fisika?



Ketua Panitia: Mba Siti Wirdah, M.Sc.

Guru: Dr. rer. nat. Muhammad Farchani Rosyid, M.Sc.

(Doctor of Physics, Technical University of Clausthal, Germany)
ASSOCIATE PROFESSOR: Laboratorium Fisika Atom dan Inti, FMIPA UGM

School of Physics 2016



Topik Bahasan;

Hari ke-1.
Vektor dan hitung vektor (penjumlahan, perkalian dengan skalar, pengurangan vektor, vektor satuan, basis ortonormal, notasi jumlahan, hasil kali skalar, hasil kali silang, hasil kali tensor, transformasi ortogonal, redefinisi vektor dan skalar)

Hari ke-2.
Ruang vektor (definisi dan contoh-contoh)

Hari ke-3.
Kalkulus vektor (medan vektor dan medan skalar, kurva integral, permukaan isoskalar, gradiensi, divergensi, rotasi, laplacian, teorema gauss dan teorema stokes)

Hari ke-4.
Tata koordinat lengkung (tata koordinat kartesius, tata koordinat umum, domain, transformasi koordinat, kurva (lengkung) koordinat, permukaan koordinat, basis kontravarian, basis kovarian, tensor metrik, unsur panjang, unsur luasan, unsur volume, gradiensi, divergensi, rotasi, laplacian, serta tata koordinat yang pernah ada)

Hari ke-5.
Lanjutan ruang vektor : pemetaan linear, isomorfisme, wakilan metrik pemetaan linear, sistem persamaan linear, masalah swanilai

Hari ke-6. Pengangtar analisa fungsional : ruang bermetrik, ruang bernorma, ruang banach, ruang berproduk skalar, ruang Hilbert, basis ortonormal

Hari ke-7. Operator dalam ruang Hilbert (operator Hermitean, self adjoint, swanilai, swavektor , spektrum Hidrogen)

Ketua Panitia: Mba Siti Wirdah, M.Sc.

Guru: Dr. rer. nat. Muhammad Farchani Rosyid, M.Sc.

(Doctor of Physics, Technical University of Clausthal, Germany)
ASSOCIATE PROFESSOR: Laboratorium Fisika Atom dan Inti, FMIPA UGM

Wednesday, January 21, 2009

School of Natural Sciences

The School of Natural Sciences

Research on frontier topics in astrophysics, biology, chemistry, mathematical physics, quantum field theory, particle phenomenology, string theory and quantum gravity.

Members of the Institute are free to work on any problems in which they are interested. In any given year, some of the members will collaborate with each other.